

1 2

3

Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a mixture of inorganic salts

Gehui Wang^{1,2,3}, Fang Zhang^{4,5}, Jianfei Peng^{5,6}, Lian Duan^{5,7}, Yuemeng Ji^{5,8}, Wilmarie Marrero-Ortiz⁵, Jiayuan Wang², Jianjun Li², Can Wu², Cong Cao², Yuan Wang⁹, Jun Zheng¹⁰, Jeremiah Secrest⁵, Yixin Li⁵, Yuying Wang^{4,5}, Hong Li¹¹, Na Li^{5,12}, and Renyi Zhang^{5,6*}

- 8 ¹ Key Laboratory of Geographic Information Science of the Ministry of Education, School of
- 9 Geographic Sciences, East China Normal University, Shanghai 200241, China
- ² State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, China
 Academy of Sciences, Xi'an 710061, China
- ³Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment,
- 13 Chinese Academy of Science, Xiamen, China
- ⁴Beijing Normal University, Beijing 100875, China
- ⁵ Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station,
 TX, 77843, USA
- ⁶ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
- 18 Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- ⁷ East China University of Science and Technology, Shanghai, China
- ⁸ School of Environmental Science and Engineering, Institute of Environmental Health and
- 21 Pollution, Control, Guangdong University of Technology, Guangzhou 510006, China
- 22 ⁹ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
- 23 ¹⁰ Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control,
- 24 Nanjing University of Information Science & Technology, Nanjing 210044, China
- ¹¹ State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research
 Academy of Environmental Sciences, Beijing 100012, China
- ¹² Key Laboratory of Songliao Aquatic Environment, Jilin Jianzhu University, Changchun,
 130118, China
- 29
- 30
- 31
- 32
- 33 *Corresponding author:
- 34 Prof. Renyi Zhang, E-mail: <u>renyi-zhang@tamu.edu</u>
- 35

36 Abstract: Atmospheric measurements showed rapid sulfate formation during severe haze 37 episodes in China, with fine particulate matter (PM) consisting of a multi-component mixture 38 that is dominated by organic species. Several recent studies using the thermodynamic model 39 estimated the particle acidity and sulfate production rate, by treating the PM exclusively as a 40 mixture of inorganic salts dominated by ammonium sulfate and neglecting the effects of organic 41 compounds. Noticeably, the estimated pH and sulfate formation rate during pollution periods in 42 China were highly conflicting among the previous studies. Here we show that a particle mixture 43 of inorganic salts adopted by the previous studies does not represent a suitable model system and 44 that the acidity and sulfate formation cannot be reliably inferred without accounting for the 45 effects of multi-aerosol compositions during severe haze events in China. Our laboratory 46 experiments show that SO₂ oxidation by NO₂ with NH₃ neutralization on fine aerosols is 47 dependent on the particle hygroscopicity, phase-state, and acidity. Ammonium sulfate and oxalic 48 acid seed particles exposed to vapors of SO_2 , NO_2 , and NH_3 at high relative humidity (RH) 49 exhibit distinct size growth and sulfate formation. Aqueous ammonium sulfate particles exhibit 50 little sulfate production because of high acidity, in contrast to aqueous oxalic acid particles with 51 significant sulfate production because of low acidity. Our field measurements demonstrate 52 significant contribution of water-soluble organic matter to fine PM in China and indicate that the 53 use of oxalic acid in laboratory experiments is representative of ambient organic dominant 54 aerosols. While the particle acidity cannot be accurately determined from field measurements or 55 calculated using the thermodynamic model, our results reveal that the pH value of ambient 56 organics-dominated aerosols is sufficiently high to promote efficient SO₂ oxidation by NO₂ with 57 NH₃ neutralization under polluted conditions in China.

- 58
- 59

60 **1.** Introduction

61	Atmospheric measurements have demonstrated rapid sulfate production during severe haze
62	events in China (Guo et al., 2014; Wang et al., 2014; Zhang et al., 2015; Cheng et al., 2016;
63	Wang et al., 2016). For example, Wang et al. (2016) showed that during pollution episodes in
64	Xi'an of China the SO_4^{2-} mass concentration increased markedly from less than 10, 10-20, to
65	greater than 20 $\mu g~m^{-3},$ with the corresponding increases in the mean $PM_{2.5}$ mass concentrations
66	from 43, 139, to 250 $\mu g~m^{-3}$ from clean, transition, to polluted periods, respectively. Among the
67	$PM_{2.5}$ species in Xi'an, organic matter (OM), nitrate (NO ₃ ⁻), and SO ₄ ²⁻ were most abundant, with
68	the mass fractions of 55%, 14%, and 14%, respectively, during the polluted period. In addition,
69	the work by Wang et al. (2016) demonstrated that the molar ratio of SO_4^{2-} to SO_2 , which reflects
70	sulfur partitioning between the particle and gas phases, exhibited an exponential increase with
71	relative humidity (RH), with the values of less than 0.1 at $RH < 20\%$ to 1.1 at $RH > 90\%$ in
72	Xi'an. Similar evolutions in SO_4^{2-} mass concentrations and the molar ratio of SO_4^{2-} to SO_2 were
73	shown during the pollution development in Beijing (Sun et al., 2013; Wang et al., 2014; Wang et
74	al., 2016). The rapid sulfate formation measured in China could not be explained by current
75	atmospheric models and suggested missing sulfur oxidation mechanisms (Wang et al., 2014).
76	Typically, high sulfate levels during haze events in China occurred concurrently with elevated
77	RH, NO _x , and NH ₃ (Wang et al., 2014; Zhang et al., 2015; Wang et al., 2016), implicating an
78	aqueous sulfur oxidation pathway. On the basis of complementary field and experimental
79	measurements, Wang et al. (2016) concluded that the aqueous oxidation of SO_2 by NO_2 is key to
80	efficient sulfate formation, but is only feasible under two atmospheric conditions, i.e., on fine
81	aerosols with high RH and NH ₃ neutralization or under cloud conditions.
82	Several recent studies estimated the particle acidity and aqueous sulfate production during

83

84	2017; Liu et al., 2017). For example, Cheng et al. (2016) estimated a pH range of 5.4 to 6.2 using
85	a thermodynamic model (ISORROPIA-II) in Beijing. On the basis of their estimated pH and the
86	previous experimental rates of SO_2 oxidation by NO_2 and the Henry's Law constants for sulfur
87	dioxide (SO ₂), bisulfite (HSO ₃ ⁻), and sulfite (SO ₃ ²⁻) from the literature (Lee and Schwartz, 1983;
88	Clifton et al., 1988; Seinfeld and Pandis, 2006), the authors derived a sulfate production rate and
89	concluded that reactive nitrogen chemistry in aerosol water explained the sulfate formation
90	during polluted periods in Beijing. In contrast, other recent studies by Guo et al. (2017) and Liu
91	et al. (2017) adopted the similar method as Cheng et al. (2016), but reported significantly
92	different values of pH and the sulfate formation rates by the aqueous SO_2 oxidation by NO_2 in
93	China. Those two later studies determined a pH range of 3.0-4.9 and suggested that fine particles
94	were moderately acidic and the aqueous SO2 oxidation by NO2 was unimportant during severe
95	wintertime haze periods in China.
96	In this article, we conducted laboratory measurements of the hygroscopicity for oxalic acid
97	particles and particle growth of ammonium sulfate particles upon exposure to SO ₂ , NO ₂ , and
98	NH3 at high RH conditions, in order to evaluate the dominant factors regulating the aqueous
99	oxidation of SO ₂ by NO ₂ . In addition, field measurements of chemical compositions of water-
100	soluble fraction for fine PM (including oxalic acid) in Beijing, Hebei Province, and Xi'an of
101	China were performed during the winter haze episodes, showing significantly enriched water-
102	soluble organic matter (WSOM). The implications for the multi-aerosol chemical compositions

severe haze events in China using the thermodynamic model (Cheng et al., 2016; Guo et al.,

103 on the pH value and sulfate production during winter pollution periods in China are discussed.

104 **2.** Methods

105 2.1 Aqueous phase oxidation of SO₂ by NO₂ in an environmental chamber

106	The experimental method using the environmental chamber has been discussed elsewhere
107	(Wang et al., 2016), and here we only provide a brief description. The aqueous SO ₂ oxidation
108	experiments was conducted by exposing size-selected (NH ₄) ₂ SO ₄ seed particles to different
109	levels of SO ₂ , NO ₂ , and NH ₃ at variable RH conditions in a 1 m^3 Teflon reaction chamber
110	covered with aluminum foil. A differential mobility analyzer (DMA) equipped with a
111	condensation particle counter (CPC) was used to measure the particle growth in diameter, in
112	order to determine sulfate formation on seeded particles (Wang et al., 2016).
113	2.2 Measurement of hygroscopic growth factor of oxalic acid
114	Hygroscopic growth factor (HGF) of oxalic acid was measured according to the method
115	previously discussed (Khalizov et al., 2009; Pagels et al., 2009). Briefly, a hygroscopicity
116	tandem differential mobility analyzer (HTDMA) coupled to a condensation particle counter
117	(CPC, TSI 3762) was used for the HGF measurement. Size-selected oxalic acid particles with the
118	dry diameter of 100 nm were exposed to increasing RH from 8% to 92% with a step range from
119	1%-10%. HGF is defined as the ratio of oxalic acid particle diameter (D_p) measured by the
120	second DMA at an elevated RH to the initial diameter ($D_0 = 100 \text{ nm}$) of the particles selected by
121	the first DMA at the dry conditions of $RH = 8\%$ (Peng et al., 2016).
122	2.3 Chemical composition of PM _{2.5} in Beijing, Hebei Province, and Xi'an, China
123	$PM_{2.5}$ samples were collected onto pre-baked (450°C for 6 hr) quartz fiber filter by using a
124	high-volume air sampler with an airflow rate of 1.03 m ³ min ⁻¹ . The sample collection in Xi'an
125	was performed on the roof of a three-story building in the urban center with a 1-hour interval for
126	each sample during the winter of 2012 (Wang et al., 2016). The sample collection in Beijing was
127	conducted during the winter of 2016 on the roof of a four-story building on the campus of China
128	Research Academy of Environmental Sciences, which is located at the northern part of Beijing.

- 129 The PM_{2.5} samples in Hebei Province were collected during the winter of 2016 on the roof of a
- three-story building on the campus of the Institute of Hydrology and Environmental Geology,
- 131 which is located in Zhengding County of Hebei Province. Both sample collections in Beijing and
- 132 Hebei Province were performed on a day/night basis. After collection, all samples were sealed
- 133 individually in an aluminum foil bag and stored in a freezer below -18°C prior to analysis.
- 134 The detailed procedures for the analysis of inorganic ions and water-soluble organic matter
- 135 (WSOM) in aerosols have been reported elsewhere (Wang et al., 2009; Wang et al., 2010; Wang
- 136 et al., 2017). Briefly, one part of the filter sample (area about 5 cm^2) was divided into several
- 137 pieces, extracted with Mili-Q pure water, and determined for WSOM and inorganic ions by
- 138 using Shimadzu TOC-L CPH analyzer and Dionex-600 ion chromatography, respectively.
- 139 Oxalic acid in PM_{2.5} was analyzed according to Wang et al. (2002) and Cheng et al. (2015). One
- 140 part of the filter sample was extracted with Milli-Q water, concentrated to dryness, and reacted
- 141 with 14% BF3/butanol at 100°C for 1 hr. After the reaction, the derivatized sample was extracted
- 142 with hexane for three times and concentrated into 1 mL. Oxalic acid in the samples was
- 143 identified by gas chromatography-mass spectrometry (GC-MS) and quantified by gas
- 144 chromatography (Agilent GC7890A).
- 145 **3.** Results

146 **3.1** Aqueous oxidation of SO₂ by NO₂ with NH₃ neutralization

147 We first evaluated the factors controlling the aqueous phase oxidation of SO₂ by NO₂ using

- 148 the environmental chamber method. The evolution in the size of ammonium sulfate particles
- 149 after exposure to SO₂, NO₂, and NH₃ at different RH and SO₂ levels is shown in Figure 1. In our
- 150 experiments, monodisperse particles with the initial dry particle size ranging from 50 to 70 nm
- 151 were selected for the exposure, and two different SO₂ concentrations (37.5 and 375 parts per

152	billions or ppb) were used. RH was maintained at a level of 80-98%, above the deliquescence
153	point (79%) of ammonium sulfate (Qiu and Zhang, 2013) to ensure aqueous particles. As is
154	shown in Figure 1, the size of $(NH_4)_2SO_4$ particles remains nearly invariant (within the
155	experimental uncertainty) after exposure to SO_2 , NO_2 , and NH_3 . A 10-fold increase in the SO_2
156	concentration has little effect on the growth of $(NH_4)_2SO_4$ particles. These results illustrate that
157	sulfate production is insignificant and SO_2 cannot be efficiently oxidized by NO_2 in the presence
158	of NH ₃ on aqueous ammonium sulfate particles. The measurement of negligible growth for
159	$(NH_4)_2SO_4$ particles exposed to SO ₂ , NO ₂ , and NH ₃ at high RH is in contrast to the previous
160	work by Wang et al. (2016), which showed large size growth and significant sulfate production
161	for oxalic acid particles with NH_3 neutralization and under high RH conditions.
162	To gain an insight into such a difference in the size growth between $(NH_4)_2SO_4$ and oxalic
163	acid particles, we measured the hygroscopic growth of oxalic acid particles. Figure 2 displays the
164	measured hygroscopic growth factor (HGF) of oxalic acid, showing an exponential increase with
165	an increase in RH. The measured HGF value is close to unity at $RH < 40\%$ and increases from
166	1.1 at $RH = 60\%$ to 1.5 at $RH = 90\%$. Our measured HGF for oxalic acid is consistent with the
167	previous studies by Prenni et al. (2001) and Mikhailov et al. (2009). On the other hand, another
168	earlier experimental study showed little growth for oxalic acid particles under high RH
169	conditions (Peng et al., 2001). The measurements of HGF also provide information on the
170	particle phase-state. As evident from Figure 2, oxalic acid particles mainly exist in a non-
171	aqueous phase at $RH < 40\%$ but in the aqueous phase at $RH > 60\%$.
172	Our present experiments of aqueous oxidation of SO ₂ by NO ₂ were performed at similar
173	conditions as those by Wang et al. (2016), i.e., with comparable concentrations for SO_2 , NO_2 ,
174	and NH_3 and in the same phase-state (aqueous) for the particles. On the other hand, the particle

175	acidity is clearly distinct between the two studies. Our present experiment is characterized by a
176	lower pH value, since ammonium sulfate is rather acidic. For example, the pH value of 0.1M
177	$(NH_4)_2SO_4$ solution is 5.5. The overall aqueous reaction between SO_2 and NO_2 in the presence of
178	NH ₃ is suggested as the following (Wang et al., 2016),
179	$2NH_{3}(g) + SO_{2}(g) + 2NO_{2}(g) + 2H_{2}O(aq) \rightarrow 2NH_{4}^{+}(aq) + SO_{4}^{2-}(aq) + 2HONO(g) $ (1)
180	Since the solubility of SO_2 and NO_2 decreases markedly with increasing particle acidity
181	(Seinfeld and Pandis, 2006; Zhang et al., 2015), the heterogeneous reaction between SO_2 and
182	NO_2 is prohibited on acidic (NH_4) ₂ SO ₄ particles. On the other hand, under the experimental
183	conditions by Wang et al. (2016), the heterogeneous reaction between oxalic acid and NH_3
184	occurred on aqueous particles in the presence of NH ₃ , yielding ammonium oxalate. The
185	ammonium oxalate is less acidic than ammonium sulfate. The pH value of 0.1 M ammonium
186	oxalate is 6.5, which is one unit higher than that of ammonium sulfate. As a result, SO_2 readily
187	dissolves into aqueous ammonium oxalate particles and is oxidized by NO ₂ into SO_4^{2-} , which is
188	consequently neutralized by NH_3 to produce $(NH_4)_2SO_4$. The resulting aqueous ammonium
189	$oxalate/(NH_4)_2SO_4$ particles exhibit a lower acidity than that of $(NH_4)_2SO_4$ particles, responsible
190	for a significant growth in the dry particle size and sulfate formation for the previous
191	experiments by Wang et al. (2016).
192	Hence, the experimental studies of our present work and that by Wang et al. (2016) reveal
193	that sulfate production on fine particles is dependent on several factors, including the particle
194	hygroscopicity, phase-state, acidity, and RH, in addition to the gaseous concentrations of SO ₂ ,
195	NO ₂ , and NH ₃ . These experimental results indicate that the acidity and sulfate formation are
196	distinct for organic seed and ammonium sulfate seed particles. While oxidation of SO_2 by NO_2
197	on aqueous (NH ₄) ₂ SO ₄ particles does not represent a viable mechanism because of a higher

198 acidity, significant sulfate production occurs on oxalic acid particles because of a lower acidity.

199 3.2 Field measurements of WSOM in China

200 Atmospheric measurements have shown that the occurrence of severe haze episodes in 201 China is accompanied with high RH conditions and PM2.5 particles consist of large amounts of 202 secondary organic and inorganic compounds. We present additional field measurements of the 203 chemical composition of PM2.5 in Beijing, Hebei Province, and Xi'an of China. Figure 3 shows 204 that the wintertime $PM_{2.5}$ samples collected at the three locations. It is evident that WSOM is 205 considerably enriched and their concentrations are comparable to those of the total inorganic ions 206 (Figure 3a and b). For example, the mass concentration of WSOM ranges from 10 to $60 \,\mu g \,m^{-3}$ in Beijing and Hebei Province during the winter of 2016 and from 10 to 180 μ g m⁻³ in Xi'an 207 208 during the winter of 2012 (Figure 3c and d, respectively). In addition, the variation of WSOM 209 displays a temporal pattern similar to that of oxalic acid, with a linear correlation coefficient of 210 0.79, 0.88 and 0.72 in Beijing, Hebei Province, and Xi'an, respectively (Figure 3e and f). The 211 mass concentration of oxalic acid in fine PM during the haze episodes is about 500 ng m⁻³ in Beijing and Hebei Province (Figure 3e) and more than 2000 ng m⁻³ in Xi'an (Figure 3f). Hence, 212 213 our field measurements indicate that oxalic acid represents one of the most abundant WSOM in 214 the aerosol-phase. Oxalic acid, a secondary product formed from the photochemical oxidation of 215 volatile organic compounds, has been also shown to exist with large abundance in China (Wang 216 et al., 2012; Cheng et al., 2013; Meng et al., 2014; Kawamura and Bikkina, 2016). In addition, 217 the previous field measurements also revealed that WSOM in China is not only enriched in 218 carboxylic acids (including oxalic acid) but also in other organic species, including carbonyls, 219 amines, and water-soluble nitrogen-containing organic compounds (Wang et al., 2010, 2013; 220 Zheng et al., 2015; Yao et al., 2016; Liu et al., 2017). The dominant organic acids and bases

- 221 indicate that haze particles in China are multi-component in nature and the estimations of the
- 222 particle acidity (or pH) and the sulfate production rate need to take into account of the effects of
- 223 organic species, in addition to inorganic ions.

4. Discussions

225 Several recent studies using the thermodynamic models (Wexler and Clegg, 2002; 226 Fountoukis and Nenes, 2007) estimated the particle acidity and sulfate production during 227 pollution episodes in China (Cheng et al., 2016; Guo et al., 2017; Liu et al., 2017). Those 228 previous studies treated the PM exclusively as a mixture of inorganic salts dominated by 229 ammonium sulfate and neglected the effects due to the presence of organic compounds. 230 Apparently, the conclusions by those modeling studies hinge on the validity of several critical 231 assumptions in their analyses, including the application of the thermodynamic model, the 232 accuracy in determining the aerosol water content (AWC), and the applicability of the earlier 233 experimental measurements for the aqueous oxidation of SO₂ by NO₂ to atmospheric conditions. 234 Estimation of the pH values using the thermodynamic models is typically of considerable 235 uncertainty, because of several intricate difficulties. For example, the ISORRPIA-II model 236 includes two modes, i.e., metastable (aerosols are assumed to be in the liquid-phase only and 237 may reach supersaturation) and stable (aerosols are assumed in the liquid- and solid phases that 238 are in equilibrium) (Guo et al., 2017). Since the thermodynamic model is established on the basis 239 of the equilibrium principles, its application to non-equilibrium conditions needs to be rigorously 240 assessed. Also, the phase (e.g., liquid, amorphorous, or crystalline) and mixing state of ambient 241 aerosols are highly complex because of the presence of multi-component organic and inorganic 242 species (Qiu and Zhang, 2013; Zhang et al., 2015), inevitably rendering high uncertainty in the 243 thermodynamic calculations.

244	Guo et al. (2017) suggested that the pH predictions using the metastable mode would be
245	more reliable than that using the stable mode, on the basis of model evaluation from measured
246	and predicted NO_3^- and NH_4^+ during the winter of 2012 in Xi'an. Figure 4 compares the
247	concentrations of NH_3 (g) and aerosol species predicted by ISORROPIA-II with the field
248	measurements under the metastable and stable modes in Xi'an during the winter of 2012. As
249	evident in Figure 4a and b, NH ₃ predicted is similar to the measured value with the metastable or
250	stable mode. Furthermore, the predicted concentrations of NO_3^- and NH_4^+ using both the
251	metastable and stable modes are nearly identical (Figure 4c-f). Guo et al. (2017) only compared
252	the liquid NH_4^+ and NO_3^- predicted by the model with the field measured aerosols composed of
253	both liquid and solid compounds, and their predicted concentrations were lower than those of the
254	measurements (see Figure S1 in Guo et al, 2017). As a result, their statement that pH prediction
255	with the metastable mode would be more reliable than that with the stable mode was unjustified.
256	Noticeably, the pH values estimated by the ISORROPIA-II model under the two modes are
257	significantly different, with the values of 4.57 ± 0.40 under the metastable mode and 6.96 ± 1.33
258	under the stable mode. Most recently, it was suggested that the large discrepancy in predicting
259	pH is attributable to the differences in the model assumptions (Song et al., 2018).
260	In addition, the pH estimation by the thermodynamic model is highly dependent on the ratio
261	of the concentration of hydrogen ions in the liquid-phase to AWC. Guo et al. (2017) and Liu et al.
262	(2017) assumed negligible particle water associated with the organic aerosol mass. Such an
263	assumption is clearly invalid since aerosols typically contain a large portion of WSOM in China
264	(Fig. 3), including organic nitrogen species (Wang et al., 2010, 2013) and acids (Wang et al.,
265	2006, 2009, 2010). Also, organic acids engage in particle-phase reactions with the basic species
266	(i.e., NH ₃ and amines), significantly enhancing the particle hygroscopicity and reducing the

- 267 acidity (Gomez-Hernandez et al., 2016). In addition, because of their strong basicity and high
- abundance, amines likely play a key role in reducing the particle-acidity in China (Wang et al.,
- 269 2010a, b; Qiu et al., 2011; Qiu and Zhang, 2012; Dong et al., 2013; Zheng et al., 2015; Yao et al.,
- 270 2016; Liu et al., 2017). Consequently, the acidity for organics-dominated aerosols is
- 271 considerably different from that of ammonium sulfate aerosols, as demonstrated in our
- 272 experimental results. While effort has been made to account for the effects of organic species on
- the aerosol properties (Clegg et al., 2013), the available thermodynamic models are still
- 274 inadequate in representing complex multi-component aerosols. An inconsistency of the
- ammonium-sulfate ratios using the thermodynamic models was identified in the eastern US, also
- suggesting a possible role for organic species (Silvern et al., 2017).
- Furthermore, the chemical mechanism leading to the aqueous conversion of SO₂ to sulfate
- 278 by NO₂ is not well understood. The previous modeling studies adopted the aqueous reaction rate

279 constants previously measured (Lee and Schwartz, 1983; Clifton et al., 1988), while the

applicability of the earlier experimental studies to atmospheric conditions is uncertain. For

- example, Lee and Schwartz (1983) examined the oxidation of S(IV) by NO₂ in the liquid phase
- by flowing gaseous NO₂ through a NaHSO₃ solution at a constant pH by regulating NaOH and
- determined the rate constant of $1.4 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ at pH = 5 and with a lower limit of $2 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$
- 1 at pH = 5.8 and 6.4 from measuring the electrical conductivity of the solution. Clifton et al.
- (1988) measured the rate constant for the reaction of NO_2 with S(IV) over the pH range of 5.3-13,
- 286 by producing NO₂ from irradiation of NaNO₂ and N₂O solutions and mixing with Na₂SO₃
- solutions, and obtained the second-order rate constant of 1.24×10^7 and 2.95×10^7 M⁻¹ s⁻¹ from
- 288 the decay of NO₂ monitored by absorption spectroscopy. The results of the measured rate
- 289 constants between the two earlier experimental measurements differed by 1-2 orders of

- 290 magnitude (Lee and Schwartz, 1983; Clifton et al., 1988). Also, both kinetic experiments
- 291 employed bulk solutions and did not account for the gaseous uptake process (Lee and Schwartz,
- 292 1983; Clifton et al., 1988).
- Wang et al. (2016) obtained the SO₂ uptake coefficient for sulfate production from
- 294 combined field measurements and laboratory experiments, and their laboratory experiments
- using aqueous oxalic acid particles reproduced the rapid sulfate production measured under
- 296 polluted ambient conditions. The results of the SO₂ uptake coefficients determined by Wang et al.
- 297 (2016) are consistent with the modeling studies in quantification of the sulfate formation using
- atmospheric models in China (e.g., Wang et al., 2014). On the other hand, Liu et al. (2017)
- invoked the experimental work by Hung et al. (2015) as a plausible cause for rapid SO₂
- 300 oxidation by O_2 in the absence of photochemistry, but without noting the high acidity as a
- 301 necessary condition in that experimental work (i.e., $pH \leq 3$). Most recently, Li et al. (2018)
- 302 suggested an indirect mechanism of SO₂ oxidation by NO₂ via HONO/NO₂⁻ produced in fast-
- 303 hydrolytic disproportionation of NO₂ on the surface of NaHSO₃ aqueous microjets. In addition,
- another recent theoretical work by Zhang et al. (2018) indicated that under weakly acidic and
- neutral conditions (pH \leq 7) the oxidation of HOSO₂⁻ by dissolved NO₂ is a self-sustaining
- 306 process, where the produced *cis*-HONO, HSO₄⁻ and H₂SO₄ promote the tautomerization from
- 307 HSO₃⁻ to HOSO₂⁻ as the catalysts.
- 308 5. Conclusions
- 309 In this paper we have presented experimental measurements of the growth of ammonium
- 310 sulfate seed particles exposed to vapors of SO₂, NO₂, and NH₃ at variable RH, the HGF of oxalic
- 311 acid particles, and field measurements of WSOM for PM_{2.5} during the severe haze events in
- 312 Beijing, Hebei Province, and Xi'an of China. Our experimental results reveal that sulfate

313 production on fine particles is dependent on the particle hygroscopicity, phase-state, and acidity, 314 as well as RH. The acidity and sulfate formation for ammonium sulfate seed particles are distinct 315 from those of oxalic acid seed particles. Aqueous ammonium sulfate particles show negligible 316 growth because of low pH, in contrast to aqueous oxalic acid particles with significant dry-size 317 increase and sulfate formation because of high pH. In addition, our atmospheric measurements 318 show significant concentrations of WSOM (including oxalic acid) in fine PM, indicating multi-319 component haze particles in China. Our results reveal that a particle mixture of inorganic salts 320 adopted by the previous studies using the thermodynamic model does not represent a suitable 321 model system and that the particle acidity and aqueous sulfate formation rate cannot be reliably 322 inferred without accounting for the effects of multi-chemical compositions during severe haze 323 events in China. Our combined experimental and field measurements corroborate the earlier 324 finding that sulfate production via the particle-phase reaction involving SO₂ and NO₂ with NH₃ 325 neutralization occurs efficiently on organics-dominated aerosols (Wang et al., 2016) but are in 326 contradiction to the most recent studies using the thermodynamic model (Guo et al., 2017; Liu et 327 al., 2017). 328 In conclusion, while the particle acidity or pH cannot be accurately determined from

atmospheric field measurements or calculated using the thermodynamic models, our combined experimental and field results provide the compelling evidence that the pH value of ambient organics-dominated particles is sufficiently high to promote SO₂ oxidation by NO₂ with NH₃ neutralization under polluted conditions in China.

333 Acknowledgements

Financial support for this work was provided by National Key R&D Plan (Quantitative
 Relationship and Regulation Principle between Regional Oxidation Capacity of Atmospheric and

- 336 Air Quality (No. 2017YFC0210000), the China National Natural Science Funds for
- 337 Distinguished Young Scholars (No.41325014), the program from National Nature Science
- Foundation of China (No. 41773117). This work was also supported by the Robert A. Welch
- 339 Foundation (Grant A-1417) W.M.-O. was supported by the National Science Foundation
- 340 Graduate Research Fellowship Program.
- 341

342 **References**

343	Cheng, C., Wang, G., Zhou, B., Meng, J., Li, J., Cao, J., and Xiao, S.: Comparison of
344	dicarboxylic acids and related compounds in aerosol samples collected in Xi'an, China
345	during haze and clean periods, Atmospheric Environment, 81(0), 443-449, 2013.
346	Cheng, C., Wang, G., Meng, J., Wang, Q., Cao, J., Li, J., and Wang, J.: Size-resolved airborne
347	particulate oxalic and related secondary organic aerosol species in the urban atmosphere of
348	Chengdu, China, Atmospheric Research, 161–162, 134-142, 2015.
349	Cheng, Y., Zheng, G., Wei, C., Mu, Q., Bo Zheng, Wang, Z., Gao, M., Zhang, Q., He, K.,
350	Carmichae, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a
351	source of sulfate during haze events in China, Science Advances, 2, e1601530, 2016.
352	Clegg, S.L., Qiu, C., Zhang, R.: The deliquescence behaviour, solubilities, and densities of
353	aqueous solutions of five methyl- and ethyl-aminium sulphate salts, Atmospheric
354	Environment, 73, 1-14, 2013.
355	Clifton, C. L., Altstein, N., and Huie, R. E.: Rate constant for the reaction of nitrogen dioxide
356	with sulfur(IV) over the pH range 5.3-13, Environmental Science & Technology, 22, 586-
357	589, 1988.
358	Dong, X. L., Liu, D. M., and Gao, S. P.: Seasonal variations of atmospheric heterocyclic
359	aromatic amines in Beijing, China, Atmospheric Research, 120, 287-297, 2013.
360	Fountoukis, C., and Nenes, A.: ISORROPIA II: A computationally efficient thermodynamic
361	equilibrium model for K ⁺ -Ca ²⁺ -Mg ² +-NH ₄ ⁺ -Na ⁺ -SO ₄ ²⁻ -NO ₃ ⁻ -Cl ⁻ -H ₂ O aerosols, Atmospheric
362	Chemistry and Physics, 7, 4639-4659, 2007.
363	Gomez-Hernandez, M., McKeown, M., Secrest, J., Marrero-Ortiz, W., Lavi, A., Rudich, Y.,
364	Collins, D. R., and Zhang, R.: Hygroscopic characteristics of alkylaminium carboxylate
365	Aerosols, Environmental Science & Technology, 50, 2292-2300, 2016.
366	Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise fine particle pH
367	sufficiently to yield nitrogen oxide-dominated sulfate production, Scientific Reports, 7,
368	12109, doi:12110.11038/s41598-12017-11704-12100, 2017.
369	Guo, H., Liu, J., Froyd, K. D., Roberts, J. M., Veres, P. R., Hayes, P. L., Jimenez, J. L., Nenes,
370	A., and Weber, R. J.: Fine particle pH and gas-particle phase partitioning of inorganic
371	species in Pasadena, California, during the 2010 CalNex campaign, Atmospheric Chemistry
372	and Physics, 17, 5703-5719, 2017.
373	Guo, S., Hu, M., Zamora, M. L., Peng, J. F., Shang, D. J., Zheng, J., Du, Z. F., Wu, Z., Shao, M.,
374	Zeng, L. M., Molina, M. J., and Zhang, R. Y.: Elucidating severe urban haze formation in
375	China, Proceedings of the National Academy of Sciences of the United States of America,
376	111, 17373-17378, 2014.
377	Hung, HM., and Hoffman, M. R.: Oxidation of gas-phase SO2 on the surfaces of acidic
378	microdroplets: Implications for sulfate and sulfate radical anion formation in the
379	atmospheric liquid phase, Environmental Science & Technology, 49, 13768-13776, 2015.
380	Kawamura, K., and Bikkina, S.: A review of dicarboxylic acids and related compounds in
381	atmospheric aerosols: Molecular distributions, sources and transformation, Atmospheric
382	Research, 170, 140-160, 2016.
383	Khalizov, A.F., Zhang, R., Zhang, D. Xue, H., Pagels, J., and McMurry, P.H.: Formation of
384	highly hygroscopic aerosols upon internal mixing of airborne soot particles with sulfuric
385	acid vapor, Journal of Geophysical Research-Atmospheres, 114, D05208,
386	doi:10.1029/2008JD010595, 2009.

387	Lee, Y. N., and Schwartz, S. E.: Kinetics of oxidation of aqueous sulfur (IV) by nitrogen
388	dioxide, in Precipitation scavenging, dry deposition, and resuspension, edited by H. R.
389	Pruppacher, R. G. Semmon and W. G. N. Slinm, Elsevier, New York, 1983.
390	Li, L., Hoffmann, M. R., and Colussi, A. J.: The role of nitrogen dioxide in the production of
391	sulfate during Chinese haze-aerosol episodes. Environmental Science & Technology 52.
392	DOI: 10.1021/acs.est.7b05222. 2018.
393	Liu, F., Bi, X., Zhang, G., Peng, L., Lian, X., Lu, H., Fu, Y., Wang, X., Peng, P. a., and Sheng,
394	G.: Concentration, size distribution and dry deposition of amines in atmospheric particles of
395	urban Guangzhou, China, Atmospheric Environment, 171, 279-288, 2017.
396	Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., and Zhu, T.:
397	Fine particle pH during severe haze episodes in Northern China, Geophysical Research
398	Letters, 44, 5213-5221.doi: 5210.1002/2017GL073210.2017.
399	Meng, J., Wang, G., Li, J., Cheng, C., Ren, Y., Huang, Y., Cheng, Y., Cao, J., and Zhang, T.:
400	Seasonal characteristics of oxalic acid and related SOA in the free troposphere of Mt. Hua.
401	central China: Implications for sources and formation mechanisms, Science of the Total
402	Environment, 493, 1088-1097, 2014.
403	Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and Poeschl, U.: Amorphous and crystalline
404	aerosol particles interacting with water vapor: conceptual framework and experimental
405	evidence for restructuring, phase transitions and kinetic limitations, Atmospheric Chemistry
406	and Physics, 9, 9491-9522, 2009.
407	Pagels, J., McMurry, P.H., Khalizov, A.F., and Zhang, R.: Processing of soot by controlled
408	sulphuric acid and water condensation—Mass and mobility relationship, Aerosol Science &
409	Technology, 43, 629–640, 2009.
410	Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Zamora, M.L., Zeng, L., Shao, M., Wu,
411	Y., Zheng, J., Wang, Y., Glen, C.R., Collins, D.R., Molina, M.J., and Zhang, R.: Markedly
412	enhanced absorption and direct radiative forcing of black carbon under polluted urban
413	environments, Proceedings of the National Academy of Sciences of the United States of
414	America, 113, 4266–4271, 2016.
415	Peng, C., Chan, M. N., and Chan, C. K.: The hygroscopic properties of dicarboxylic and
416	multifunctional acids: measurements and UNIFAC predictions, Environmental Science &
417	Technology, 35, 4495-4501, 2001.
418	Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., Sherman, D. E., Russell, L. M., and Ming, Y.:
419	The effects of low molecular weight dicarboxylic acids on cloud formation, Journal of
420	Physical Chemistry A, 105, 11240-11248, 2001.
421	Qiu, Q., Wang, L., Lal, V., Khalizov, A.F., and Zhang, R.: Heterogeneous chemistry of
422	Alkylamines on Ammonium Sulfate and Ammonium Bisulfate, Environmental Science &
423	Technology, 45, 4748–4755, 2011.
424	Qiu, C., and Zhang, R.: Physiochemical Properties of Alkylaminium Sulfates: Hygroscopicity,
425	Thermostability, and Density, Environmental Science & Technology, 46, 4474-4480, 2012.
426	Qiu, C., and Zhang, R. Y.: Multiphase chemistry of atmospheric amines, Physical Chemistry
427	Chemical Physics, 15(16), 5738-5752, 2013.
428	Seinfeld, J. H., and Pandis, S. N., Atmospheric Chemistry and Physics: From Air Pollution to
429	Climate Change, 2nd ed., John Wiley & Sons, Hoboken, NJ, 2006.
430	Silvern, R.F., Jacob, D.J., Kim, P.S., Marais, E.A., Turner, J. R., Campuzano-Jost, P., and
431	Jimenez, J. L. Inconsistency of ammonium-sulfate aerosol ratios with thermodynamic
432	models in the eastern US: a possible role of organic aerosol, Atmospheric Chemistry and

- 433 Physics, 17, 5107–5118, 2017.
- Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., and McElroy, M. B.:
 Fine particle pH for Beijing winter haze as inferred from different thermodynamic
- 436 equilibrium models, Atmospheric Chemistry and Physics Discussions,
- 437 <u>https://doi.org/10.5194/acp-2018-6, 2018.</u>
- Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol
 composition, sources and processes during wintertime in Beijing, China, Atmospheric
 Chemiatry and Physics, 13(9), 4577-4592, 2013.
- Wang, G., Xie, M., Hu, S., Tachibana, E., and Kawamura, K.: Dicarboxylic acids, metals and
 isotopic compositions of C and N in atmospheric aerosols from inland China: Implications
 for dust and coal burning emission and secondary aerosol formation, Atmospheric
 Chemistry and Physics, 10, 6087-6096, 2010.
- Wang, G., Kawamura, K., Umemoto , N., Xie, M., Hu, S., and Wang, Z.: Water-soluble organic
 compounds in PM2.5 and size-segregated aerosols over Mt. Tai in North China Plain,
 Journal of Geophysical Research-Atmospheres, 114, D19208,
- 448 dio.19210.11029/12008JD011390, 2009.
- Wang, G., Kawamura, K., Cao, J., Zhang, R., Cheng, C., Li, J., Zhang, T., Liu, S., and Zhao, Z.:
 Molecular distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and a-dicarbonyls in size-resolved atmospheric particles from Xi'an city, China, Environmental Science & Technology, 46, 4783-4791, 2012.
- Wang, G., Zhang, R., Zamora, M. L., Gomez, M. E., Yang, L., Hu, M., Lin, Y., Guo, S., Meng,
 J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Jiayuan
 Wang, Marrero-Ortiz, W., Tian, P., Secrest, J., Peng, J., Du, Z., Jing Zheng, Shang, D., Zeng,
- 456 L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L.,
- 457 Cheng, Y., Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent
- 458 Sulfate Formation from London Fog to Chinese Haze, Proceedings of National Academy of 459 Science of United States of America, 113(48), 13630-13635,
- 460 doi/13610.11073/pnas.1616540113., 2016.
- Wang, G. H., Niu, S. L., Liu, C., and Wang, L. S.: Identification of dicarboxylic acids and
 aldehydes of PM10 and PM2.5 aerosols in Nanjing, China, Atmospheric Environment,
 36(12), 1941-1950, 2002.
- Wang, G. H., Kawamura, K., Watanabe, T., Lee, S. C., Ho, K. F., and Cao, J. J.: Heavy loadings
 and source strengths of organic aerosols in China, Geophysical Research Letters, 33,
 L22801, doi:22810.21029/22006GL027624, 2006.
- Wang, G. H., Zhou, B. H., Cheng, C. L., Cao, J. J., Li, J. J., Meng, J. J., Tao, J., Zhang, R. J., and
 Fu, P. Q.: Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during
 spring 2009: differences in composition and size distribution between the urban ground
 surface and the mountain atmosphere, Atmospheric Chemistry and Physics, 13(2), 819-835,
 2013.
- Wang, J., Wang, G., Gao, J., Wang, H., Ren, Y., Li, J., Zhou, B., Wu, C., Zhang, L., Wang, S.,
 and Chai, F.: Concentrations and stable carbon isotope compositions of oxalic acid and
 related SOA in Beijing before, during, and after the 2014 APEC, Atmospheric Chemistry
 and Physics, 17(2), 981-992, 2017.
- Wang, L., Lal, V., Khalizov, A.F., and Zhang, R.: Heterogeneous chemistry of alkylamines with
 sulfuric acid: Implications for atmospheric formation of alkylaminium sulfates,
- 478 Environmental Science & Technology, 44, 2461–2465, 2010a.

- Wang, L., Khalizov, A.F., Zheng, J., Xu, W., Lal, V., Ma, Y., and Zhang, R.: Atmospheric
 nanoparticles formed from heterogeneous reactions of organics, Nature Geoscience, 3, 238242, 2010b.
- Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhan, Q., Philip, S., and
 Xie1, Y.: Enhanced sulfate formation during China's severe winter haze episode in January
 2013 missing from current models, Journal Geophysical Research-Atmospheres, 119(17),
 10425-10440, doi:10410.11002/12013JD021426, 2014.
- Wexler, A.S., and Clegg, S. L.: Atmospheric aerosol models for systems includ- ing the ions H+,
 NH4+, Na+, SO42-, NO3-, Cl-, Br- and H2O. Journal of Geophysical Research, 107
 (D14), 4207, doi:10.1029/2001JD000451, 2002.
- Yao, L., Wang, M.-Y., Wang, X.-K., Liu, Y.-J., Chen, H.-F., Zheng, J., Nie, W., Ding, A.-J.,
 Geng, F.-H., Wang, D.-F., Chen, J.-M., Worsnop, D. R., and Wang, L.: Detection of
 atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical
 ionization mass spectrometer with protonated ethanol reagent ions, Atmospheric Chemistry
 and Physics, 16(22), 14527-14543, 2016.
- Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., and Wang,
 Y.: Formation of urban fine particulate matter, Chemical Reviews, 115, 3803-3855,
 doi:3810.1021/acs.chemrev.3805b00067, 2015.
- Zhang, H., Chen, S., Zhong, J., Zhang, S., Zhang, Y., Zhang, X., Li, Z., and Zeng, X.C.:
 Formation of aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications, Atmospheric Environment, 177, 93-99, 2018.
- Zheng, J., Ma, Y., Chen, M., Zhang, Q., Wang, L., Khalizov, A. F., Yao, L., Wang, Z., Wang, X.,
 and Chen, L.: Measurement of atmospheric amines and ammonia using the high resolution
 time-of-flight chemical ionization mass spectrometry, Atmospheric Environment, 102, 249259, 2015.
- 504
- 505
- 506

507

509 510

Figure 1. Size evolution of ammonium sulfate particles after exposure to SO₂, NO₂, and NH₃ at 511

512 different RH levels. Variations in mobility diameter (D_p) of ammonium sulfate particles as a

513 function of reaction time. The symbols with different colors denote measurements with exposure

514 to different SO₂ concentrations and RH levels. In all cases, the NO₂ concentration is 375 ppb,

515 and the NH₃ concentration is 500 ppb.

Figure 2. Measured hygroscopic growth factor (HGF) of oxalic acid particles at different RH conditions. D_p is the particle diameter at an elevated RH, and D_0 (100nm) is the initial diameter of oxalic acid particles at RH = 8%.

530

Figure 3. Measurements of water-sluble organic matter (WSOM) of $PM_{2.5}$ collected in Beijing and Hebei Province during the winter of 2016 (left panels: a, c and e) and in Xi'an during the winter of 2012 (right panels: b, d and f). In (a) and (b), the green, red, blue, yelow, pink, and gray colors represent WSOM, sulfate, nitrate, ammonium, chloride, and the others (i.e., the sum of Na⁺ + Ca²⁺ + Mg²⁺ + K⁺), respectively.

537

Figure 4. Comparison of measured NH_3 , NH_4^+ , and NO_3^- concentrations with those predicted by ISORROPIA-II model using the forward mode under the metastable (left panels) and stable assumptions (right panels).